Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data
نویسندگان
چکیده
Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.
منابع مشابه
Identification of a Novel Fusarium Head Blight Resistance Quantitative Trait Locus on Chromosome 7A in Tetraploid Wheat.
ABSTRACT Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive diseases of durum (Triticum turgidum sp. durum) and common wheat (T. aestivum). Promising sources of FHB resistance have been identified among common (hexaploid) wheats, but the same is not true for durum (tetraploid) wheats. A previous study indicated that chromosome 7A from T. turgidum sp. dicocc...
متن کاملThe Evaluation of Genomic Relationships and Diversity of Wild and Cultivated Wheats Possessing A Genome in Different Ploidy Levels Using SSR Markers
Genomic relationships and diversity of 37 wild and cultivated wheat (Triticum sp.) possessing A genome include four T. urartu (Au), thirteen wild einkorn (Am), four cultivated einkorn (Am), seven durum wheat (BBAuAu), three T. zhukovskyi (AtAtAmAmGG) and six com...
متن کاملQuantification of genetic relationships among A genomes of wheats.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were...
متن کاملارزیابی تنوع ژنتیکی گندم دوروم ( Triticum turgidum var. durum) با استفاده از نشانگرهای رتروترانسپوزونی (SSAP)
The genetic diversity of major crops, including durum wheat, has suffered an overall reduction with time. The knowledge of patterns of genetic diversity enhances the efficiency of germplasm conservation and improvement. In this study, 87 Iranian landraces of Triticum turgidum var. durum originating from different geographical areas of Iran, along with 21 durum cultivars from ten countries were ...
متن کاملGenetic Diversity of Genotypes of Durum Wheat (Triticum Turgidum L.) Genotypes Based on Cluster and Principal Component Analyses
Genetic diversity is the basis of the natural evolution of plant breeding and biological system are important components of sustainability. The aim of this study was to evaluate 116 genotypes of Triticum turgidum from seven countries in terms of morphological traits. The results showed that high significant differences among the genotypes. The correlation between gra...
متن کامل